Nuprl Lemma : q-constraint-negative
11,40
postcript
pdf
x
:(
),
r
:
,
k
:
,
y
:(
List).
(
k
||
y
||)
x
(
k
) < 0
(q-rel(
r
;q-linear(
k
;
j
.
x
(
j
);
y
))
q-rel(
r
;-(
y
[(
k
- 1)]) + ((-1/
x
(
k
)) * q-linear(
k
- 1;
j
.
x
(
j
);
y
))))
latex
Definitions
r
*
s
,
ff
,
tt
,
if
b
then
t
else
f
fi
,
q-rel(
r
;
x
)
,
(
r
/
s
)
,
P
&
Q
,
False
,
x
.
t
(
x
)
,
t
T
,
True
,
T
,
,
P
Q
,
A
,
P
Q
,
A
B
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
Unit
,
,
x
(
s
)
,
,
,
S
T
Lemmas
qmul
assoc
,
qmul-qdiv-cancel3
,
qinv
inv
q
,
qmul
over
minus
qrng
,
qadd
comm
q
,
qmul-qdiv-cancel4
,
qmul
over
plus
qrng
,
assert
of
bnot
,
eqff
to
assert
,
assert
of
eq
int
,
eqtt
to
assert
,
iff
transitivity
,
qmul
preserves
qless
,
qle
wf
,
qmul
preserves
qle
,
not
wf
,
bnot
wf
,
bool
wf
,
eq
int
wf
,
qmul
one
qrng
,
qinv
wf
,
assert-qeq
,
qeq
wf2
,
assert
wf
,
not
functionality
wrt
iff
,
qmul
zero
qrng
,
qless-minus
,
qinv-negative
,
qless
irreflexivity
,
qle
weakening
eq
qorder
,
qless
transitivity
2
qorder
,
nat
plus
wf
,
length
wf1
,
nat
plus
inc
,
qless
wf
,
le
wf
,
q-linear
wf
,
qdiv
wf
,
select
wf
,
int
inc
rationals
,
qmul
wf
,
qadd
wf
,
nat
wf
,
q-linear-unroll
,
rationals
wf
,
q-rel
wf
,
true
wf
,
squash
wf
,
iff
wf
origin